149 research outputs found

    Private states, quantum data hiding and the swapping of perfect secrecy

    Full text link
    We derive a formal connection between quantum data hiding and quantum privacy, confirming the intuition behind the construction of bound entangled states from which secret bits can be extracted. We present three main results. First, we show how to simplify the class of private states and related states via reversible local operation and one-way communication. Second, we obtain a bound on the one-way distillable entanglement of private states in terms of restricted relative entropy measures, which is tight in many cases and shows that protocols for one-way distillation of key out of states with low distillable entanglement lead to the distillation of data hiding states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations. In analogy to the quantum repeater, this paradigm has been called the quantum key repeater. We show that when extending private states with one-way communication, the resulting rate is bounded by the one-way distillable entanglement. In order to swap perfect secrecy it is thus essentially optimal to use entanglement swapping.Comment: v3 published version, some details of the main proofs have been moved to the appendix, 21 pages. v2 claims changed from LOCC to one-way LOCC in the process of correcting a mistake found in v1 (in proof of Lemma 3). v1: 15 pages, 9 figure

    Entanglement distillation from Greenberger-Horne-Zeilinger shares

    Get PDF
    We study the problem of converting a product of Greenberger-Horne-Zeilinger (GHZ) states shared by subsets of several parties in an arbitrary way into GHZ states shared by every party. Our result is that if SLOCC transformations are allowed, then the best asymptotic rate is the minimum of bipartite log-ranks of the initial state. This generalizes a result by Strassen on the asymptotic subrank of the matrix multiplication tensor.Comment: 8 pages, v2: minor correction

    Distillation of Greenberger-Horne-Zeilinger states by combinatorial methods

    Get PDF
    We prove a lower bound on the rate of Greenberger-Horne-Zeilinger states distillable from pure multipartite states by local operations and classical communication (LOCC). Our proof is based on a modification of a combinatorial argument used in the fast matrix multiplication algorithm of Coppersmith and Winograd. Previous use of methods from algebraic complexity in quantum information theory concerned transformations with stochastic local operations and classical operation (SLOCC), resulting in an asymptotically vanishing success probability. In contrast, our new protocol works with asymptotically vanishing error.Comment: 26 pages, 2 figures; v2: updated to match published versio

    Uncertainty, Monogamy, and Locking of Quantum Correlations

    Full text link
    Squashed entanglement and entanglement of purification are quantum mechanical correlation measures and defined as certain minimisations of entropic quantities. We present the first non-trivial calculations of both quantities. Our results lead to the conclusion that both measures can drop by an arbitrary amount when only a single qubit of a local system is lost. This property is known as "locking" and has previously been observed for other correlation measures, such as the accessible information, entanglement cost and the logarithmic negativity. In the case of squashed entanglement, the results are obtained with the help of an inequality that can be understood as a quantum channel analogue of well-known entropic uncertainty relations. This inequality may prove a useful tool in quantum information theory. The regularised entanglement of purification is known to equal the entanglement needed to prepare a many copies of quantum state by local operations and a sublinear amount of communication. Here, monogamy of quantum entanglement (i.e., the impossibility of a system being maximally entangled with two others at the same time) leads to an exact calculation for all quantum states that are supported either on the symmetric or on the antisymmetric subspace of a dxd-dimensional system.Comment: 7 pages revtex4, no figures. v2 has improved presentation and a couple of references adde

    Quantum Anonymous Transmissions

    Full text link
    We consider the problem of hiding sender and receiver of classical and quantum bits (qubits), even if all physical transmissions can be monitored. We present a quantum protocol for sending and receiving classical bits anonymously, which is completely traceless: it successfully prevents later reconstruction of the sender. We show that this is not possible classically. It appears that entangled quantum states are uniquely suited for traceless anonymous transmissions. We then extend this protocol to send and receive qubits anonymously. In the process we introduce a new primitive called anonymous entanglement, which may be useful in other contexts as well.Comment: 18 pages, LaTeX. Substantially updated version. To appear at ASIACRYPT '0

    Asymptotic entanglement transformation between W and GHZ states

    Full text link
    We investigate entanglement transformations with stochastic local operations and classical communication (SLOCC) in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increase and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen we also compute the conversion rate from W to GHZ states.Comment: 11 page

    Smooth Entropy Bounds on One-Shot Quantum State Redistribution

    Get PDF
    In quantum state redistribution as introduced in [Luo and Devetak (2009)] and [Devetak and Yard (2008)], there are four systems of interest: the AA system held by Alice, the BB system held by Bob, the CC system that is to be transmitted from Alice to Bob, and the RR system that holds a purification of the state in the ABCABC registers. We give upper and lower bounds on the amount of quantum communication and entanglement required to perform the task of quantum state redistribution in a one-shot setting. Our bounds are in terms of the smooth conditional min- and max-entropy, and the smooth max-information. The protocol for the upper bound has a clear structure, building on the work [Oppenheim (2008)]: it decomposes the quantum state redistribution task into two simpler quantum state merging tasks by introducing a coherent relay. In the independent and identical (iid) asymptotic limit our bounds for the quantum communication cost converge to the quantum conditional mutual information I(C:RB)I(C:R|B), and our bounds for the total cost converge to the conditional entropy H(CB)H(C|B). This yields an alternative proof of optimality of these rates for quantum state redistribution in the iid asymptotic limit. In particular, we obtain a strong converse for quantum state redistribution, which even holds when allowing for feedback.Comment: v3: 29 pages, 1 figure, extended strong converse discussio

    Post-selection technique for quantum channels with applications to quantum cryptography

    Get PDF
    We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for any arbitrary input, it is sufficient to consider the special case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. A similar statement holds for more general channels which are covariant with respect to the action of an arbitrary finite or locally compact group. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained by proofs relying on the exponential de Finetti theorem [Renner, Nature Physics 3,645(2007)].Comment: 3.5 page
    corecore